Plastic deformation

CHAPTER VI

PLASTIC DEFORMATION:

Introduction to the dislocation model

For most engineering cases and realistic scenarios, the deformation of solids is both plastic and
elastic. For example, plastic deformation in rolled metal sheets can be as large as 80%. At such large
deformations, some residual elastic deformations still exist from internal stresses of defects
introduced in the crystal lattice during the rolling process. We have introduced the elastic deformation
theory in Chapter I11. Here, we discuss plastic deformation, which is not a simple extension of the
Landua-Lifshitz elasticity theory to higher strains. Thus, to describe plastic deformation well, we
must introduce structural elements of materials typically neglected in studying elastic properties. This
chapter aims to illustrate plastic deformation starting with the dislocation model, even though these
are not the only "sources™ of plastic deformation.

6.1 Phenomenology of plastic deformation

6.1.1 Experimental observations

After plastic deformation, the
surface of monocrystalline
samples often shows
characteristic lines (Figure 6-
1). Plastic deformation is
produced due to the "sliding"
part of the solid (Figure 6-2)
while maintaining the prior
crystallographic orientation.

In many cases, the surface
separating the two parts,
which shifts, is generated by a
straight line parallel to the
surface so that it is a plane
surface, called a "glide plane."
The lines formed by the
intersection of the glide planes
and the sample surface are
called "glide lines."
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Figure 6-1: Monocrystal of NisAl deformed at T=77K
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Figure 6-2: Diagram of the surface of the sample in Figure 6-1

We note here that:

- The "sliding" is not the only mode of plastic deformation, but it is very often the most
important one,

- Even though an elongation is produced, plastic deformation acts by shear deformation along
characteristic planes of the crystal,

- The previously mentioned glid lines indicate that plastic deformation is heterogeneous and
concentrated in certain glide planes. The regions between the slip step surfaces are
untouched by the deformation.

6.1.2 Relations between sliding and crystal structure

Early researchers over a century ago had difficulty envisioning the relation between plastic
deformation and the atomic structure of crystals due to the lack of advanced imaging techniques, e.g.,
high-resolution TEM, controlled materials processing, and other experimental methods. In 1912,
when Max von Laue showed the crystalline nature of metals, another approach had to be considered.
Metals have relatively simple crystal structures: FCC [Au, Al, Ag, Cu, ...] HCP [Zn, Mg, ...] BCC
[Fe, W, Mo, Nb, Ta, ...]. Therefore, it was preferable to manufacture single-phase monocrystals to
study plastic deformation mechanisms that are less convoluted than polycrystalline samples. As a
result, we can observe strain-stress curves of the kind shown in Figures 6-3. In most cases, we note
that there exists a first domain (stage I) where the plastic deformation occurs readily and where the
monocrystal deforms as a "stack of cards,"” i.e., by shear along the glide planes.
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Figure 6-3: After the first phase of easy" deformation (stage 1), we generally observe hardening, and the deformation
can become again of elastic type (stage Il). This hardening can be followed by another deformation phase (stage 1l1),
characterized by activating other gliding mechanisms on less dense atomic planes. The curves a) and b) refer to tensile
and compressive deformation, respectively.

Figure 6-4: Step" edges appearing on the surface of a deformed monocrystal

The observation of the glide lines enables us to determine the glide planes; in FCC and HCP metals,
these are, in general, highly dense planes [(111) for FCC, (001) for HC]. Moreover, the direction of
the deformation is almost always in a dense direction ([110] in FCC, [110] in HCP, and [111] in CC).
Thus, plastic deformation manifests as a shear deformation most of the time.

Schmid and Boas have determined that gliding always occurs when the shear stress t, for a glide
plane and direction, reaches a characteristic threshold t=tc, dependent on the nature of the crystal but
independent from the orientation of the axis of the stress to the crystal lattice. If the axis of traction
forms an angle A with the glide direction and an angle ® with the glide plane, the force component in

T= %cos ®cosA = ocosPcosA (6.1)

the direction of the sliding is FcosA, while the area of the glide plane is S/cos®, or 1 is called the
projected stress and m=cos®cosi the Schmid factor. Therefore, when multiple glide systems exist (a
glide system is defined by a glide plane and direction), t reaches the threshold tc for at least one of
the possible crystallographic systems if the stress o is progressively increased. Thus, the first glide
system that activates has the highest Schmid factor and shear stresses that trigger plastic deformation.
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Figure 6-5: Definition of the angles @ and 1 in the Schmid factor

6.2 Elastic yield strength and the dislocation concept
6.2.1 Rigid gliding over a plane

The simplest hypothesis to explain previous observations is by imagining that the atomic movements
between planes are rigid and coherent, i.e., all the atoms in a plane move simultaneously. If the top
part of the crystal slides rigidly over the bottom part (Figure 6-6a), we expect the stress ¢ to be
periodic (Figure 6-6b):

- periodic with a period b,
- symmetric to displacement,
- zero for stable equilibrium (x=0) and unstable (x=b/2).

X —| |— - 0]

a)

Figure 6-6: Rigid gliding hypothesis, a plane moving over a plane
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The simplest solution for this periodic stress is given by:

_ (fo_x}
O =0,5th b (6.2)

The constant o, can be estimated to a first approximation starting from the linear elasticity for small
displacements (small x) where there is a direct proportionality between the stresses and the shear (cf
chapter 11), i.e.,

A X _ _ 2mx
GZJUBZ#;:O-OT

o — where p is the shear modulus, so that:

..... ub
Oy=7——
a e ° 27ma

from which we can write:

b

Figure 6-7 : Simple Shear

The maximum value of this expression in x = b/4 gives the value of the theoretical elastic yield
strength:

This value of w10, called the theoretical Frenkel limit, does not follow experimental evidence;

-4
instead, we find values for the yield limit in the order of magnitude of % 10745 10 L.
For example, for copper:

n=45GPaor o, = 4500 MPa. Experimentally, o, is in the order of a few MPa.

6.2.2 Localized gliding
a) Occurrence of local plastic deformations

The amount of deformation can be obtained by measuring, for example, the relative displacements of
the faces of an elementary cube between the initial and final states. The plastic deformation of the
elementary cube is obtained without applied stress. For this purpose, the cube is partitioned into layers

perpendicular to the direction *; with a thickness %%/, We give the relative displacement between two

consecutive layers ou, and take the limit for ox, _)Owhile keeping the ratio 9, / 0x; constant. If

some gaps appear (Figure 6-8c), these are filled with external matter until the local density is again
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homogeneous. The volume element thus deformed in both a plastic and homogeneous way, remaining
free of any stresses.

dx
J

Figure 6-8: Realization of plastic deformations

Let du! be the relative displacement in the direction i of the faces with orientation j, which limits

the volume:
dx;
‘[ du. ou.
du? = —t = —+ .
u _[[{aijaxj {axj}h"

[

) ) : ou
As in the elastic case, letting B = P we have:
X

J
duf = ﬁijdxj

where dx; represents the separation in the initial configuration of the displaced faces. If the
displacements occur on the three faces, then

duf = ﬁfl}d% + ﬁ;%dxz + ﬁsgdxs

where @4/ represents the projection on the axis i of the displacement vector di of point

("""‘"l""ixz’‘b‘3 )to point O. We define thus the plastic displacement gradient tensor B’ as:

du’ = Br ds (6.3)
Remark:

In the elastic case, the displacements are obtained by applying the stresses on the faces of the cube,

though the definition of the elastic displacement gradient tensor B is analogous to the formula (3.15):

du® = B°d%
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The total deformation is:

dii = du” +du’ (64

We can then also write: o
dﬁ:ﬁ_&WIth B=ﬁe+ﬁp
b) Compatibility conditions at the scale of the deformed body

The previous descriptions only consider deformation over an elementary cube without considering
compatibility with the rest of the deformed body. To understand how the local deformations can
comply with this continuity condition, let us cut the solid into elementary cubes and apply a plastic
displacement gradient B dependent on the position of the solid. The cubes are free from any bounds
during this operation, and their physical state is unaltered. When we try to rebuild the solid body, two
cases arise:

i) The cubes adjust without gaps and stresses, and we obtain the same overall state of the
deformed body.

ii) The cubes cannot be adjusted together (see Figure 6-9). It is necessary to have rotations and
elastic deformations to connect the solid in its part again, which implies the presence of stresses
in the body. After the solid has been reconstructed, we take away the applied forces. We then
obtain the same final state that would have been there without the solid partition (for the same
distribution of plastic displacement gradient 7). Still, local stresses persist (internal stresses)
distributed to minimize the corresponding elastic energy.

We want to express that the solid remains
compact, i.e., with no cracks. This imposes
‘. that the common face between two

"
= consecutive elements shares the same
displacement. That is, for a common face in
aﬁu £0 Figure 6-9, the components B:: are identical
rlx, in O and in %% that is to say,
1 aﬁEl — 0
- ox,
(8] 1
whereas B. can vary in any way (Figure 6-
aﬁ:] —0 9). That is, it must be:
E"I| ﬁ21,1 =ﬁ31‘1 =0
We can express it in a more general form by
3B, press it i
12 2() the following equation,
ox, )
- dii = B.
U =——dx; = pdx,
X
Figure 6-9: Plastic Deformation without adjustment which is an exact differential.
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This implies Cauchy's conditions:

9, _3B,
dx, 0x, ifj#k

We can summarize these conditions in a more elegant form. For example, writing all the conditions,
we have:

9B, _ 3B,
ox, Ox;
B_E_B_B: =0=;5}E
dx, 0x
9B, _9B,
dx, Ox,

That is to say rof B =—rot’ =&

In fact, rotB #0 gescribes the distribution of "cracks” in the solid. The following shows that the

= _ VAR, . .
tensor & = VAB is a source for the internal stress field.

c) Incompatible elasticity (internal stresses)

In the non-plastic case or else in the case of a plastic deformation that does not destroy the connection

of the solid, 78" =0 and the previous condition (7*B” =0 becomes,
;E?;E =VAa E =0

which defines the classic theory of elasticity. This case only includes external forces applied to the
surface of the body that determine pure elastic deformations since no gaps occur, i.e., satisfies the
compatibility conditions.

In the general case, the plastic displacement gradient B’ does not satisfy VAB"=0 . Therefore, it is
necessary that in the solid, elastic deformation exists such that VAB ==VAB’ {5 reconstitute the
connection within the solid. These induced elastic deformations correspond - via Hooke's law - to the

existence of elastic stresses or "internal stresses," meaning that these exist within the solid even if no
external force is applied on the external faces of the solid.

The equation then defines these internal stresses:

G=10iB =V AB° (6.8)
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It is essential to investigate what o represents. Applying Stoke's theorem to each component with the
first index of O :

[ [@ds =[ [roiBdS = § Bdx=$ B, dx, = i

The flux of & thrgjgh a Slﬁace S insisting on a closed path C depends only on C. So letb the flux of

@ through S, as B*=B~B" ang 70B=0 e can then write:

b, =§du; =-au? = [ [, ds, (6.9)
C C s

(¢ C ) Suppose now that the circuit C crosses one of
T, the surfaces where the plastic deformation has
P \+ been introduced, i.e. cutting through the solid

following the mentioned surfaces, then
Y creating the displacement du ,of the edge + in
relation to the edge -.

+ k ) + Following the definition of the vector of the
< circuit C points towards the positive edge (see
Figure 6-10).

Figure 6-10: Contour through the cutting surface

For a cutting surface going through circuit C from part to part, the integral of b is zero because if we
have 94/ in A, it is 44/ in B—only the cutting surfaces that stay within C count, their limit bound
by the closed contour C. Let I'> be a cutting surface attached by a curve D enclosed by the closed
contour C; b becomes the displacement of the negative edge of I'y to the positive edge of I'1. T2 is

oriented by C (df being the positive normal vector to I'). Consequently, curve D is equally oriented
as the positive normal to the surface S, insisting on C (Figure 6-10). The curve D is called a dislocation

line, bis the Burgers vector, and C is the Burger circuit.

If the dislocations exist throughout the crystal, their density in a point M can be obtained by
considering an infinitesimal circuit C serving as contour for the infinitesimal surface AS centered at
point M. We then have:

%= as

Ab represents the sum of the Burgers vectors of the dislocations encircled by C and @ the tensor
can be considered as the dislocation density in point M.
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Remark: there exists a relationship with the theory of magnetic fields.

b=§p dx
C
We note that this expression is analogous to Ampere's theorem:
i=§Hdl
C
We see that, despite one tensorial order difference, we can make the correspondence between:

b <> i from one side and

B° < H fr0m the other

Transforming the contour integrals in integrals over the internal surface (Stoke's formula), we have:

b=¢p ai=[roip-dS=[ [a-d§

similar to ‘ ’ '
i=¢Hdl = [rotH -dS=[[]-dS

C 5

N

where &=701B" s the dislocation density tensor, analogous to J , the current intensity vector, which

is equal to rotH . In the same way, as J = ""H induces divj =0 \ye have that & =rotB° implies

divai =0 , which means that a dislocation line as a current line cannot stop inside a solid. Therefore,
closed dislocation (Burgers) circuits can only exist where the Burgers vector is conserved. In other

words, equation 4iv@ =0 means that the Burgers vector is conserved along a dislocation line, as for
current density in a current line.

Thus, dislocation lines are the sources of internal stresses due to elastic incompatibilities, like the
analog in which current lines are the sources of magnetic fields. While Ampére's microscopic model
of current for magnetism is only useful for calculations, in crystal plastic deformation, the dislocation
lines created are actual physical entities that can be photographed. In this case, the Burgers vector is
constrained to be a periodic multiple of the lattice to correspond to reasonable energies. Thus, these
dislocations play an essential role in explaining the plastic behavior of crystalline solids.

d) Transposition of the crystal lattice

Plastic deformation can conceptually be thought of as deriving from the fact that certain parts of the
crystal slide before others; the gliding begins in a specific location and spreads progressively
throughout the crystal. At a given instant, we can define a boundary between a part of the plane that
has already slipped and the other still at rest (Figure 6-11). This boundary corresponds to a
dislocation. The idea that deformation by gliding results from the movement of dislocations was
introduced in 1934 by Taylor, Orowan, and Polanyi.
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Figure 6-11: Diagram of the localized gliding

This assumption reminds us of what we previously explained in the theory of incompatible elasticity
framework. We showed that in the general case of deformation without fracture (" otf = 0) and when

the distribution of plastic deformations does not verify VAB" =0 , an elastic deformation in the solid
must exist such that &=V AB ==V AB" |n other words, the flux b of o through a surface S
limited by the contour C, for a cutting surface I'> (which stops at D inside the solid) leads to a
discontinuity of the displacement,

b = dii® = —dii? = J'J'édjs"
s

where b is the displacement of the negative edge of I'; relative to the positive edge of I', (Figure 6-
10). Curve D delimiting the cutting surface I'> enclosed by the contour C represents the boundary
between the part of the plane that has already slipped and the one that still has not.

Figure 6-12 represents the transposition of Figure 6-8 in a crystal lattice.

NIV N

-+ I\II/

\r

Figure 6-12: Transposition of Figure 6-10 in a crystal lattice

Slip, as it has been defined, requires only the motion of atoms in the vicinity of the boundary. The
deformation is concentrated around the dislocation. It follows that it is sufficient to propagate the

dislocation over a surface S for the crystal being sheared by b over this surface (Figure 6-13).
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The atoms' displacements are no longer in phase, so the critical shear stress is expected to decrease
considerably. We can approximatively say that we have a weaker force at work over greater
distances for the same work. If A is the distance covered by the dislocation motion (A = um) instead

of b (= A ). We expect to have a reduction in the stress of the order of magnitude of

Aot
b

if we suppose the equality in work holds in the two cases. In fact, the (relative) disorder at the core
of the dislocation helps the process even more. The stress necessary for dislocation propagation
related to atomic motion is called Peierls-Nabarro stress.
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Figure 6-13: Gliding of a dislocation in a crystal under the application of a shear stress z
6.2.3 creation of a dislocation
a) In a continuous medium

The creation of a dislocation line D in a continuous elastic medium requires the following operations
(Figure 6-14):

1) The medium is cut following any surface S. The boundary between this surface and the rest of the
medium is D.

2) The two edges, S1 and Sz, are moved relative to each other without deformation. Here, only
translational motions are considered, even though rotations could also be used.

3) We add or subtract matter so that when the operation is completed, there are no empty spaces or
additional matter.

4) The matter is glued again along the surfaces, and the external stresses applied during these
operations are removed.

The dislocations hence created are called Volterra dislocations.

The dislocation line D forms a displacement field, which varies in the medium from point to point,
causing deformations and, thus, stresses. Since the external surfaces are free, the stresses are zero.
The internal stresses vary continuously in the crystal, even when crossing the surface S, assuming
edges S1 and S2 do not deform (distort). Only a discontinuity in displacement exists going through S,
while no discontinuity in deformation or stresses arises. The cutting surface has no physical meaning
in the material; the result is the same regardless of the surface S chosen.
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Figure 6-14: Creation of a translational dislocation line in a continuous medium
b) In a crystal lattice: Burgers vector

The above statements still hold their validity - except that displacement must now be equal to a shift
corresponding to a lattice period such that the coupling does not depend on the choice of the cutting
surface.

In this case, we use Burgers vector and circuit notion to characterize the displacement b . We define

the Burgers vector 5by the process suggested by Frank. But, first, we consider a dislocation in a
simple cubic structure.

Figure 6-15 shows a plane section of a cube with an edge dislocation. Again, we must distinguish the
"good" crystal regions - where the deformations are small - and the regions of "defected” crystal,
closer to the dislocation, where the deformations are significant.

Figure 6-15: Edge dislocation with its corresponding Burgers circuit

To define the Burgers vector b , Wwe draw a closed contour around the dislocation line in the clockwise

direction with the orientation of the dislocation line § . This circuit is located within the "good" crystal
that encircles the dislocation. Then, we draw the same circuit on the perfect crystal (Figure 6-16).

The vector necessary to close the circuit is the Burgers vector b of the dislocation. Its direction is
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from the final point to the initial point of the circuit. (This definition is not the only one in the scientific
literature; many authors have given the opposite direction to the Burgers vector).

LY N NI NNV L
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Figure 6-16: Burgers circuit in a perfect crystal

A dislocation is characterized by the following:

- the direction of its line §
- its Burgers vector b

and the angle (‘5 ,5) defines the type of dislocation (Figure 6-17).

_¢‘AAA\AJ\2

(L L]
)

Figure 6-17: Burgers circuit in the deformed crystal
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Remarks:

- Except for the cases where the Burgers vector bis parallel to the dislocation line 3 , Creating a
dislocation line produces an extra half-plane, with one end coinciding with it (see Figure 6-17). The
position of this additional half-plane can be obtained by considering the direct coordinate system (

‘5,5,71): 7 points in the direction of the plane. Conversely, if Sand 7 are known, bcan be
obtained by completing the right-handed trihedron.

- Again, in the case where band § are not parallel and for a conserva}ive dislocation motion (i.e.,
without diffusion), the glide plane of the dislocation includes b and § . Its normal is then defined
by Enb :

- There existg a specific terminology for the character of dislocations:

- if (5’5) = /2, we call it an edge dislocation (Figure 6-17)
- ifl(g’g) =0, we call it a screw dislocation (Figure 6-18), and it does not have a defined glide
plane

- mixed dislocation is the term used to indicate all other types of dislocations
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Figure 6-18: Representation of a screw dislocation

We note that the Burgers vector is perpendicular to the dislocation line in the case of an edge
dislocation. For a screw dislocation, the vector & is parallel to the dislocation line (Figure 6-19).

O 0 0O O C O O

Figure 6-19: Burgers vector for an edge dislocation (a) and a screw dislocation (b)
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6.3 General properties of dislocations

6.3.1 Dislocation loops

As noted earlier in the chapter, dislocations cannot terminate within a crystal. Until now, dislocations
are described as emerging from both sides of the crystal on the surface. However, it is possible to
imagine closed loops of dislocations inside the crystal. We consider two kinds of loops: glide loops
and prismatic loops.

a) Glide loops

_ i) A cut is made following the ABCD plane. The
e ) atoms of the upper part are then displaced on the

F £ left by an interatomic distance. Let us consider
what happens at the edges of the loop.

i) We first observe what happens on AB and CD
by making a section through EEEE. The
£ E displacement has introduced two edge dislocations
- of opposite signs. One of the segments has its extra
' half-plane pointing towards the upper part, the
other towards the bottom.

A section through FFFF shows screw dislocations.
They must also be of opposite signs.

Figure 6-20: Glide loop

This dislocation line resides on dense atomic planes and could have any shape. Therefore, this loop
configuration type is subdivided into portions of edge, screw, and mixed dislocations (Figure 6-21).
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Figure 6-21: Dislocation loop diagram

b) Prismatic loops

Figure 6-22: Interstitial prismatic loop

6.3.2 Properties of the Burgers Vector

i) For the glide loops, we cut along a closed
surface followed by a displacement in the plane
where this surface lies. Here, we make the same
cut, but instead of a parallel displacement, the
two surfaces are separated by an interatomic
distance, and the hole is filled with an extra
plane.

i) We note that the section EEEE:
(b) is identical to the FFFF section

(c). They both show edge dislocation. Instead of

- introducing an extra plane (interstitial loop), we

could have removed one (vacancy-type
dislocation loop), and the result would have been
the same.

Following the definition of the Burgers vector, we can list a few crucial properties.

* The vector Sonly depends on the nature of the "defected"” crystal encircled by the circuit. It does

not rely on the shape or the origin of the circuit.

* For describing dislocations in terms of disconnections, the atomic displacement from one side of
the disconnection is given by the Burgers vector & . This vector expresses the crystal shear.

Physics of materials
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» We refer to a perfect dislocation as those surrounded by "good" crystals containing no defects. In
this case, the vector b is a vector of the direct lattice.

« The displacement b, which defines the dislocation line, has the same value all along the line. That
is, the Burgers vector is conservative.

« If two dislocation lines, L1 and L2, end in the same line, L3, the Burgers vector of this dislocation is
the sum of the other two vectors (Figure 6-23a). We then have:

—_—

b,=b,+b, (6.10)

If we orientate the lines towards the node of the dislocations, we have Zb" =0 (Figure 6-23b). This
is equivalent to Kirchoff's law in electricity. Thus, it is unsurprising to think of this analogy between

band i as discussed above.

L, L,

L2
a) b)

Figure 6-23: Conservation of Burgers vector

« If the Frank circuit encircles several dislocations (6-24), the Burgers vector of this circuit is the sum
of the Burgers vectors of the dislocations contained in it.

« Figure 6-24: Frank circuit containing more than one dislocation b =b, +b, +b,

* For screw dislocations,g is parallel to § ; the dislocation is dextrorotatory if & and b are in the same
direction (‘5 b =b). It is levorotatory in the other case.
* In the case of a dislocation loop (glide loop), the b vector is constant, whereas § rotates by 2mx.

Therefore, the opposite sides of the loop have opposite § (Figure 6-25).
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Figure 6-25: Glide loop: the Burgers vector is conserved

6.4 Dislocation motion

When dislocations move, a crystal is plastically deformed. Let us consider the case of a pair of edge
dislocations of opposite signs (Figure 6-27). If stress is applied, these dislocations move in opposite
directions. When dislocations move out of the crystal, an edge is created on both sides of the crystal.
If the crystal contains several moving dislocations, we observe several "steps."

_<_T

Figure 6-27: Edges showing up at the surface during the displacement of a pair of edge dislocations

We note that the result is what is expected for the displacement by an interatomic distance of one
plane to the other. The motion of a screw dislocation is somewhat more complex to grasp.

We understand well in Figure 6-20 that when a shear stress 7 is applied, the two points A and B tend
to separate and the two screw dislocations. When dislocations reach the surface, they produce two
"steps” (Figure 6-28). The displacement of the screw dislocation is perpendicular to the displacement
of the atoms, that is, perpendicular to the stress.
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Figure 6-28: Step™ edges appearing on the surface during the displacement of a pair of screw dislocations

From the combined motions of screw and edge dislocations that we discussed, it is easy to understand
what happens in the case of a glide loop (see Figure 6-29).

When the loop has come out of the crystal, we have the same result as if:

i) an edge dislocation had crossed the whole crystal,

ii) ascrew dislocation had crossed the whole crystal;

iii) A pair of edge dislocations had gone out of the crystal;
iv) A pair of screw dislocations had exited the crystal.

edge dislocation

screw dislocation

Figure 6-29: Step" edges appearing on the surface during the displacement of a dislocation loop

6.4.1 Glide plane

We note that a dislocation can only move without mass transfer (conservative motion) in the plane
defined by the vectors 5 and b . This plane is called the glide plane of the dislocation.

Screw dislocations do not have a well-defined glide plane (5 and b are parallel) but generally move
in a densely packed lattice plane. (e.g. (111) planes in f.c.c.). During their displacement, they can
change the glide plane (for example, they can vary from a (111) plane to a (111) if their Burgers

vector is in the [TOI]); this behavior is referred to as "cross-slip.” This dislocation motion can make
it possible to dodge some obstacles; in Figure 6-30, we can observe the double cross-slip of a

dislocation loop with Burgers vector. p = E[TOI]
2
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Figure 6-30: The cross-slip of a dislocation loop

6.4.2 Climb of a dislocation

As we discussed, the motion of a dislocation in its glide plane is a phenomenon that occurs without
mass transfer. This is not the case for an edge or mixed dislocation moving perpendicularly to this
glide plane.

For an edge dislocation to move (climb) by an interatomic distance perpendicular to its glide plane
(vertical motion shown in Figure 6-31), a row of atoms must be removed or brought with the
dislocation line. This mechanism can only happen by mass diffusion. In the case shown in Figure 6-
31, the upward dislocation motion can only be accomplished by diffusion of vacancies towards the
dislocation. The creation of vacancies accompanies a downward dislocation motion. We note that
dislocations can be sinks or sources of vacancy defects (or interstitials). Since the dislocation climb
requires the formation and migration of point defects, it can only happen at reasonable speeds at high
temperatures when thermally activated.
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Figure 6-31: Climb of dislocation to a vacancy line
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For prismatic loops that cannot move along their glide cylinder, a motion in the plane of the loops
occurs that conserves the size of these loops. It is not a gliding process and not quite a climb
mechanism since there is no mass diffusion toward the loops. The mechanism can only be produced
by the diffusion of vacancies (or interstitials) along the dislocation line (pipe diffusion), referred to
as conservative climb.

6.4.3 relation between dislocation motion and plastic deformation

We have observed that the movement of dislocations involves a plastic deformation; it must be
possible to establish a relation between this motion and the deformation caused by it. Consider first
the case in which a crystal in the shape of a parallelepiped (L1 L2 L3) (Figure 6-32) is crossed by a

straight edge dislocation with Burgers vector &,
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Figure 6-32: Deformation resulting from the gliding of a dislocation

When the dislocation has crossed the whole crystal, it has caused a plastic deformation € given by:

b
£=—
LZ

If the dislocation only moves by a distance u, the deformation can be given by

e=l . _b, S=L
- Lz L1 - S - 1L2 (611)
or if it is displaced over the surface AA=u- LS, then:
bbb V=LL,L 6.12
- L2 L1L3 _V - 1L2 3 ( . )

If we now suppose that Nm parallel dislocations have moved in this same glide plane or others parallel
to it, the deformation after they have all crossed an equal area AA js given by:

N
e=—".bAA
v (6.13)
N,
where €= 5 bu (6.14)
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We introduce then the notion of the density of mobile dislocations in their glide planes A defined

by:
_Nu _Nu-Ly

A
n= g v (6.15)
We notice that this quantity expresses:
- either the average number of dislocations emerging per unit surface
- or the total length of the dislocations per unit volume
We then have:
e=Ab-u (6.16)

If we also assume that every dislocation moves with the same speed, we can express the deformation
speed by:

&= Abii = Abv (6.17)

It is Orowan's equation. This is one of the most important equations and concepts of this course.

Thus, we notice that the plastic deformation velocity is directly linked to the speed of the dislocations.
Therefore, the dislocations appear as the "carriers" of plastic deformation, in the same way as
electrons are for electric current.

6.5 Multiplication of dislocations

6.5.1 Hardening phenomenon

The direct observations of dislocations, such as those with electron microscopes (Figure 6-33), clearly
show that the increase in dislocation density accompanies plastic deformation. Dislocation densities
vary from A = 10° cm™ to A = 10™ or 10* cm after plastic deformation in metals. We know from
experience that metals become harder during deformation. For instance, in Figure 6-34, we observe
an increase in the yield strength (12> 11) during repeated loading/unloading cycles. This effect is
caused by the "tangling™ of dislocations, which mutually interfere with their motion and hence cause
the "work hardening" and a substantial increase in internal stresses.

Fracture occurs when the plastic deformation is made impossible by the dislocations completely
blocking each other out (point R in Figure 6-34).
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Figure 6-33: Arrangement of dislocations produced by plastic deformation of iron at 20 °C (deformed to 9%) [top left];
at -135°C (deformed to 7%) [top right]; Arrangement of dislocations in an iron-silicon alloy deformed at 20 °C [bottom
left] and deformed to 20% and annealed 15 min at 600 ‘C [bottom right].
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Figure 6-34: Increase in the yield strength during consecutive loadings of a sample
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6.5.2 Sources of Dislocations

The increase in dislocation density during plastic deformation provides evidence that there must be
sources of dislocations. Several mechanisms have been suggested; the simplest one is the one
conceived by Frank and Read (Figure 6-35).
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Figure 6-35: Formation of a dislocation loop by the Frank-Read mechanism

™

Consider a dislocation line ABCD, with only the segment BC situated in a glide plane: B and C are
thus anchor points. When a shear stress 7 is applied, the segment BC bows into an arch shape. For t
> terit, the loop extends until the two segments, P' and P, touch. Since these two loop segments have
Burgers vectors of opposite signs but equal length, they cancel out. What remains is a glide loop,
which continues to grow, and a new arch forms, continuing the process to radiate dislocation loops.
It is a Frank-Read source.

6.5.3 Other hardening processes

The motion of dislocations is perturbed by the presence of other dislocations (work hardening); we
can also block the dislocations by introducing other atoms in the lattice (interstitial and substitutional
impurities, precipitates).

a) Pinning of dislocations

Very often, interstitial impurities (C, N, O) diffuse towards the dislocations and make their motion
very hard; this phenomenon corresponds to an increase in the yield strength of the material.

For example, the tensile stress-strain curve of iron and mild steel (Figure 6-36) shows a very
distinctive aspect of these materials, that is, a higher yield point followed by a drop in the stress -
called lower yield point - where the material deforms at a constant stress value. To understand this
phenomenon, we assume that impurities block dislocations. Then, under applied stress, dislocations
are progressively "unblocked" from their cloud of impurities and move. As a result, the activation
and propagation of series dislocations in a common glide plane can develop macroscopic slip bands
called Liders bands. This phenomenon always appears after aging, during which other atoms can
migrate towards the dislocations, and is not observed just after a slight deformation - in other words,
after the creation of new dislocations.
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Figure 6-36: Characteristic stress-strain curve for mild steel
b) Structural hardening

The elements of an alloy, in solid solution or as dispersed phases, modify the plastic properties of the
base metal. Figure 6-37 shows the effect of some thermal processes on an Al-2% alloy. After
guenching, we have an oversaturated solid solution of Cu in aluminum. The following thermal
processes cause the precipitation of copper as small particles with different characteristics (size,
coherence with the matrix).

These age-hardening processes are accompanied by a substantial variation in the mechanical

properties of the alloy as well. All these processes can be described as the interaction between
dislocations and obstacles impeding their motion. Here, these obstacles are precipitates.
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Figure 6-37: Effect of different thermal treatments on the deformation of an alloy Al-2%-Cu.
Measurements were taken at -196 °C.
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6.6 Recrystallization

In this chapter, we showed how the deformation of material causes a significant increase in the
concentration of dislocations (A goes from 10° to 10! cm™). This phenomenon corresponds to a
substantial increase in internal energy. For the crystal to return to its initial state, it has to make
dislocations generated by plastic deformation disappear. Recrystallization is often the primary
mechanism associated with the full recovery of dislocations. This recovery is the thermodynamic
driving force of recrystallization.

Figure 6-38 a)-h) shows the recrystallization and fast grain growth from stored energy of dislocations
in a heavily deformed gold polycrystalline sample. Recovery and annihilation of dislocations drive
recrystallation, which causes a reduction of residual stresses, dislocation density, and internal energy
(Figure 6-38: 1) ). The grain growth needs the diffusion of atoms through the interface. It can only be
achieved at high temperatures, so the full recovery of metals can only be performed at high
temperatures.
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Figure 6-38: The recrystallized grain (arrow) does not contain dislocations anymore

6.7 Crystal growth

The presence of dislocations is a necessary condition for crystal growth. We consider the crystal
growth starting from a lightly oversaturated vapor phase. The growth is caused by the deposition of
atoms on the surface. In principle, this surface is not regular but shows incomplete layers of atoms
bounded by steps. These steps are not necessarily straight but can exhibit edges called jogs (Figure
6-39).

Consider the effect of vapor pressure. Some atoms in the vapor are absorbed on the surface. Only
surface diffusion is fast enough for the absorbed atoms to diffuse over a long distance until they reach
a step. Then, atoms diffuse along the step until they reach a jog. Since they are in contact with the
crystal on 3 of the six faces, atoms are bound more strongly. We can then say there is equilibrium
when atoms join and leave the jog with the same frequency.
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On the other hand, if there is a light oversaturation, more atoms join the jog than leave; the step
"climbs"” up until it reaches the edge of the crystal. Then, we can observe the layers fill progressively,
and the steps disappear. New layers must nucleate to continue the growth. The presence of a nucleus
(an isolated monolayer) increases the surface energy, and this nucleus is not stable unless it reaches
a specific critical size. The probability that a nucleus with the required size is formed depends heavily
on the oversaturation. An oversaturation of 25% to 40% is necessary for the growth to have a
noticeable speed.

As opposed to the previous predictions, the speed of crystal growth increases almost proportionally
to oversaturation for small values ranging from 3% to 4% (Figure 6-40). The curve found
experimentally is produced if nuclei formation is unnecessary and steps already exist on the surface.
To explain this phenomenon, Frank supposed that the growing crystal was not perfect but contained
screw dislocations.
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Figure 6-39: Growth by sublimation
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Figure 6-40: Growth speed of a monocrystal as a function of the oversaturation of the atmosphere

Figure 6-41 illustrates Frank's explanation: a screw dislocation reaches the surface of the crystal,
normal to it, creating a step from the end of the dislocation to the edge of the crystal. When the surface
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absorbs atoms, they diffuse towards this step, which then moves sideways. However, this motion
cannot complete a uniform atomic layer because the upper surface is a spiral ramp.

Figure 6-41: Growth on the front of a screw dislocation

We can easily understand (Figure 6-42) that during the growth, the step moves as a rigid spiral that
rotates around its center O with a certain angular velocity o

dl p v
=2p6 and =—| = |=7=
p==p. ¢ dr[w) 2p,

2P. = critical radius of the nucleus previously mentioned

Ve = sideway displacement speed of a step with infinite radius (straight step)
p = instantaneous radius of the spiral

{a} {b) {c}

(<)

Figure 6-42: Diagram of the spiral growth on a screw dislocation

Figure 6-43 shows the result obtained on the face ¢ of a "salol™ crystal made from a solid solution of
carbon bisulphide. Figures 6-43 b) and c) represent the growth spirals obtained on the base plane of
silicon carbide.
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Figure 6-43: Images illustrating the growth stimulated by the presence of a screw dislocation. a) The surface of a)
polyethylene crystal. b) and c) SiC crystal.
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