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CHAPTER VI  PLASTIC DEFORMATION: 
     Introduction to the dislocation model 
 
 

 
 
For most engineering cases and realistic scenarios, the deformation of solids is both plastic and 

elastic. For example, plastic deformation in rolled metal sheets can be as large as 80%. At such large 

deformations, some residual elastic deformations still exist from internal stresses of defects 

introduced in the crystal lattice during the rolling process. We have introduced the elastic deformation 

theory in Chapter III. Here, we discuss plastic deformation, which is not a simple extension of the 

Landua-Lifshitz elasticity theory to higher strains. Thus, to describe plastic deformation well, we 

must introduce structural elements of materials typically neglected in studying elastic properties. This 

chapter aims to illustrate plastic deformation starting with the dislocation model, even though these 

are not the only "sources" of plastic deformation. 

 
 

6.1 Phenomenology of plastic deformation 
 

6.1.1 Experimental observations 

 

After plastic deformation, the 

surface of monocrystalline 

samples often shows 

characteristic lines (Figure 6-

1). Plastic deformation is 

produced due to the "sliding" 

part of the solid  (Figure 6-2) 

while maintaining the prior 

crystallographic orientation. 

 

In many cases, the surface 

separating the two parts, 

which shifts, is generated by a 

straight line parallel to the 

surface so that it is a plane 

surface, called a "glide plane." 

The lines formed by the 

intersection of the glide planes 

and the sample surface are 

called "glide lines." 
 

 

Figure 6-1: Monocrystal of Ni3Al deformed at T=77K
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Figure 6-2: Diagram of the surface of the sample in Figure 6-1 

 

 

We note here that: 

 

- The "sliding" is not the only mode of plastic deformation, but it is very often the most 

important one, 

- Even though an elongation is produced, plastic deformation acts by shear deformation along 

characteristic planes of the crystal, 

- The previously mentioned glid lines indicate that plastic deformation is heterogeneous and 

concentrated in certain glide planes. The regions between the slip step surfaces are 

untouched by the deformation. 

 

 

6.1.2 Relations between sliding and crystal structure 
 

Early researchers over a century ago had difficulty envisioning the relation between plastic 

deformation and the atomic structure of crystals due to the lack of advanced imaging techniques, e.g., 

high-resolution TEM, controlled materials processing, and other experimental methods. In 1912, 

when Max von Laue showed the crystalline nature of metals, another approach had to be considered. 

Metals have relatively simple crystal structures: FCC [Au, Al, Ag, Cu, ...] HCP [Zn, Mg, ...] BCC 

[Fe, W, Mo, Nb, Ta, ...]. Therefore, it was preferable to manufacture single-phase monocrystals to 

study plastic deformation mechanisms that are less convoluted than polycrystalline samples. As a 

result, we can observe strain-stress curves of the kind shown in Figures 6-3. In most cases, we note 

that there exists a first domain (stage I) where the plastic deformation occurs readily and where the 

monocrystal deforms as a "stack of cards," i.e., by shear along the glide planes. 
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Figure 6-3: After the first phase of easy" deformation (stage I), we generally observe hardening, and the deformation 

can become again of elastic type (stage II). This hardening can be followed by another deformation phase (stage III), 

characterized by activating other gliding mechanisms on less dense atomic planes. The curves a) and b) refer to tensile 

and compressive deformation, respectively. 

Figure 6-4: Step" edges appearing on the surface of a deformed monocrystal 

 

The observation of the glide lines enables us to determine the glide planes; in FCC and HCP metals, 

these are, in general, highly dense planes [(111) for FCC, (001) for HC]. Moreover, the direction of 

the deformation is almost always in a dense direction ([110] in FCC, [110] in HCP, and [111] in CC). 

Thus, plastic deformation manifests as a shear deformation most of the time.  

 

Schmid and Boas have determined that gliding always occurs when the shear stress τ, for a glide 

plane and direction, reaches a characteristic threshold τ=τc, dependent on the nature of the crystal but 

independent from the orientation of the axis of the stress to the crystal lattice. If the axis of traction 

forms an angle λ with the glide direction and an angle Φ with the glide plane, the force component in 

the direction of the sliding is Fcosλ, while the area of the glide plane is S/cosΦ, or τ is called the 

projected stress and m=cosΦcosλ the Schmid factor. Therefore, when multiple glide systems exist (a 

glide system is defined by a glide plane and direction), τ reaches the threshold τc for at least one of 

the possible crystallographic systems if the stress σ is progressively increased. Thus, the first glide 

system that activates has the highest Schmid factor and shear stresses that trigger plastic deformation. 

(6.1) 
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Figure 6-5: Definition of the angles Φ and λ in the Schmid factor 
 

6.2 Elastic yield strength and the dislocation concept 
 

6.2.1 Rigid gliding over a plane 

 

The simplest hypothesis to explain previous observations is by imagining that the atomic movements 

between planes are rigid and coherent, i.e., all the atoms in a plane move simultaneously. If the top 

part of the crystal slides rigidly over the bottom part (Figure 6-6a), we expect the stress σ to be 

periodic (Figure 6-6b): 

 

- periodic with a period b, 

- symmetric to displacement, 

- zero for stable equilibrium (x=0) and unstable (x=b/2). 

Figure 6-6: Rigid gliding hypothesis, a plane moving over a plane 
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The simplest solution for this periodic stress is given by:  

 

 

 

The constant σ0 can be estimated to a first approximation starting from the linear elasticity for small 

displacements (small x) where there is a direct proportionality between the stresses and the shear (cf 

chapter III), i.e., 

 

  
 where μ is the shear modulus, so that: 

  

  
 

 from which we can write: 

 

  
 

 

 

 

 

The maximum value of this expression in x = b/4 gives the value of the theoretical elastic yield 

strength: 

 

 
 

This value of μ/10, called the theoretical Frenkel limit, does not follow experimental evidence; 

instead, we find values for the yield limit in the order of magnitude of to μ.  

 

For example, for copper: 

 

μ ≈ 45 GPa or                   MPa. Experimentally,        is in the order of a few MPa. 

 

 

6.2.2 Localized gliding 

 

a) Occurrence of local plastic deformations 

 

The amount of deformation can be obtained by measuring, for example, the relative displacements of 

the faces of an elementary cube between the initial and final states. The plastic deformation of the 

elementary cube is obtained without applied stress. For this purpose, the cube is partitioned into layers 

perpendicular to the direction with a thickness . We give the relative displacement between two 

consecutive layers and take the limit for while keeping the ratio constant. If 

some gaps appear (Figure 6-8c), these are filled with external matter until the local density is again 

Figure 6-7 : Simple Shear 

(6.2) 
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homogeneous. The volume element thus deformed in both a plastic and homogeneous way, remaining 

free of any stresses. 

 

Figure 6-8: Realization of plastic deformations 

 

Let          be the relative displacement in the direction i of the faces with orientation j, which limits 

the volume: 

 

 

 

 

As in the elastic case, letting                  we have: 

 

 

 

where    represents the separation in the initial configuration of the displaced faces. If the 

displacements occur on the three faces, then 

 

 
 

where  represents the projection on the axis i of the displacement vector of point  

( )to point O. We define thus the plastic displacement gradient tensor as: 

Remark: 

 

In the elastic case, the displacements are obtained by applying the stresses on the faces of the cube, 

though the definition of the elastic displacement gradient tensor is analogous to the formula (3.15): 

(6.3) 
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The total deformation is: 

 

 

We can then also write: 

     with  

 

b) Compatibility conditions at the scale of the deformed body  

 

The previous descriptions only consider deformation over an elementary cube without considering 

compatibility with the rest of the deformed body. To understand how the local deformations can 

comply with this continuity condition, let us cut the solid into elementary cubes and apply a plastic 

displacement gradient βP dependent on the position of the solid. The cubes are free from any bounds 

during this operation, and their physical state is unaltered. When we try to rebuild the solid body, two 

cases arise: 

 

i) The cubes adjust without gaps and stresses, and we obtain the same overall state of the 

deformed body.  

 

ii) The cubes cannot be adjusted together (see Figure 6-9). It is necessary to have rotations and 

elastic deformations to connect the solid in its part again, which implies the presence of stresses 

in the body. After the solid has been reconstructed, we take away the applied forces. We then 

obtain the same final state that would have been there without the solid partition (for the same 

distribution of plastic displacement gradient βP). Still, local stresses persist (internal stresses) 

distributed to minimize the corresponding elastic energy. 

 

We want to express that the solid remains 

compact, i.e., with no cracks. This imposes 

that the common face between two 

consecutive elements shares the same 

displacement. That is, for a common face in 

Figure 6-9, the components are identical 

in O and in , that is to say, 

 

whereas can vary in any way (Figure 6-

9). That is, it must be:  

 

 

We can express it in a more general form by 

the following equation, 

 

 

 

 

Figure  6-9: Plastic Deformation without adjustment                        which is an exact differential. 

(6.4) 
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This implies Cauchy's conditions: 

 

if j ≠ k 

 

We can summarize these conditions in a more elegant form. For example, writing all the conditions, 

we have: 

 

 

 

 

 

 

 

 

 

 

 

That is to say  

 

 

In fact,  describes the distribution of "cracks" in the solid. The following shows that the 

tensor is a source for the internal stress field. 

 

 

c) Incompatible elasticity (internal stresses) 

 

In the non-plastic case or else in the case of a plastic deformation that does not destroy the connection 

of the solid,  and the previous condition ( ) becomes, 

 

 

 

which defines the classic theory of elasticity. This case only includes external forces applied to the 

surface of the body that determine pure elastic deformations since no gaps occur, i.e., satisfies the 

compatibility conditions. 

In the general case, the plastic displacement gradient does not satisfy . Therefore, it is 

necessary that in the solid, elastic deformation exists such that  to reconstitute the 

connection within the solid. These induced elastic deformations correspond - via Hooke's law - to the 

existence of elastic stresses or "internal stresses," meaning that these exist within the solid even if no 

external force is applied on the external faces of the solid. 

 

The equation then defines these internal stresses: 

(6.8) 
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It is essential to investigate what represents. Applying Stoke's theorem to each component with the 

first index of : 

 

The flux of through a surface S insisting on a closed path C depends only on C. So let the flux of 

through S, as and . We can then write: 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 6-10: Contour through the cutting surface 

 

For a cutting surface going through circuit C from part to part, the integral of is zero because if we 

have in A, it is in B—only the cutting surfaces that stay within C count, their limit bound 

by the closed contour C. Let Γ2 be a cutting surface attached by a curve D enclosed by the closed 

contour C; becomes the displacement of the negative edge of Γ1 to the positive edge of Γ1. Γ2 is 

oriented by C ( being the positive normal vector to Γ). Consequently, curve D is equally oriented 

as the positive normal to the surface S, insisting on C (Figure 6-10). The curve D is called a dislocation 

line, is the Burgers vector, and C is the Burger circuit. 

 

If the dislocations exist throughout the crystal, their density in a point M can be obtained by 

considering an infinitesimal circuit C serving as contour for the infinitesimal surface ΔS centered at 

point M. We then have: 

 

 

Suppose now that the circuit C crosses one of 

the surfaces where the plastic deformation has 

been introduced, i.e. cutting through the solid 

following the mentioned surfaces, then 

creating the displacement        of the edge + in 

relation to the edge -.  

 

Following the definition of the vector of the 

circuit C points towards the positive edge (see 

Figure 6-10). 

 

       represents the sum of the Burgers vectors of the dislocations encircled by C and       the tensor 

can be considered as the dislocation density in point M. 

 

(6.9) 
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Remark: there exists a relationship with the theory of magnetic fields. 

We note that this expression is analogous to Ampère's theorem: 

We see that, despite one tensorial order difference, we can make the correspondence between: 

 

from one side and 

from the other 

 

Transforming the contour integrals in integrals over the internal surface (Stoke's formula), we have: 

 

 
similar to 

 
 

where is the dislocation density tensor, analogous to , the current intensity vector, which 

is equal to . In the same way, as induces , we have that implies 

, which means that a dislocation line as a current line cannot stop inside a solid. Therefore, 

closed dislocation (Burgers) circuits can only exist where the Burgers vector is conserved. In other 

words, equation means that the Burgers vector is conserved along a dislocation line, as for 

current density in a current line. 

 

Thus, dislocation lines are the sources of internal stresses due to elastic incompatibilities, like the 

analog in which current lines are the sources of magnetic fields. While Ampère's microscopic model 

of current for magnetism is only useful for calculations, in crystal plastic deformation, the dislocation 

lines created are actual physical entities that can be photographed. In this case, the Burgers vector is 

constrained to be a periodic multiple of the lattice to correspond to reasonable energies. Thus, these 

dislocations play an essential role in explaining the plastic behavior of crystalline solids. 

 

d) Transposition of the crystal lattice  

 

Plastic deformation can conceptually be thought of as deriving from the fact that certain parts of the 

crystal slide before others; the gliding begins in a specific location and spreads progressively 

throughout the crystal. At a given instant, we can define a boundary between a part of the plane that 

has already slipped and the other still at rest (Figure 6-11). This boundary corresponds to a 

dislocation. The idea that deformation by gliding results from the movement of dislocations was 

introduced in 1934 by Taylor, Orowan, and Polanyi. 
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Figure 6-11: Diagram of the localized gliding 

 

This assumption reminds us of what we previously explained in the theory of incompatible elasticity 

framework. We showed that in the general case of deformation without fracture ( ) and when 

the distribution of plastic deformations does not verify , an elastic deformation in the solid 

must exist such that . In other words, the flux of through a surface S 

limited by the contour C, for a cutting surface Γ2 (which stops at D inside the solid) leads to a 

discontinuity of the displacement, 

 

 

where is the displacement of the negative edge of Γ2 relative to the positive edge of Γ2 (Figure 6-

10). Curve D delimiting the cutting surface Γ2 enclosed by the contour C represents the boundary 

between the part of the plane that has already slipped and the one that still has not. 

Figure 6-12 represents the transposition of Figure 6-8 in a crystal lattice. 

 
Figure 6-12: Transposition of Figure 6-10 in a crystal lattice 

Slip, as it has been defined, requires only the motion of  atoms in the vicinity of the boundary. The 

deformation is concentrated around the dislocation. It follows that it is sufficient to propagate the 

dislocation over a surface S for the crystal being sheared by over this surface (Figure 6-13).  
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The atoms' displacements are no longer in phase, so the critical shear stress is expected to decrease 

considerably. We can approximatively say that we have a weaker force at work over greater 

distances for the same work. If Λ is the distance covered by the dislocation motion (Λ ≈ μm) instead 

of b (≈ ). We expect to have a reduction in the stress of the order of magnitude of 

 

 

 

if we suppose the equality in work holds in the two cases. In fact, the (relative) disorder at the core 

of the dislocation helps the process even more. The stress necessary for dislocation propagation 

related to atomic motion is called Peierls-Nabarro stress. 

 
 Figure 6-13: Gliding of a dislocation in a crystal under the application of a shear stress τ 

 

6.2.3 creation of a dislocation 

 

a) In a continuous medium 

 

The creation of a dislocation line D in a continuous elastic medium requires the following operations 

(Figure 6-14): 

 

1) The medium is cut following any surface S. The boundary between this surface and the rest of the 

medium is D. 

2) The two edges, S1 and S2, are moved relative to each other without deformation. Here, only 

translational motions are considered, even though rotations could also be used. 

3) We add or subtract matter so that when the operation is completed, there are no empty spaces or 

additional matter. 

4) The matter is glued again along the surfaces, and the external stresses applied during these 

operations are removed. 

The dislocations hence created are called Volterra dislocations. 

 

The dislocation line D forms a displacement field, which varies in the medium from point to point, 

causing deformations and, thus, stresses. Since the external surfaces are free, the stresses are zero. 

The internal stresses vary continuously in the crystal, even when crossing the surface S, assuming 

edges S1 and S2 do not deform (distort). Only a discontinuity in displacement exists going through S, 

while no discontinuity in deformation or stresses arises. The cutting surface has no physical meaning 

in the material; the result is the same regardless of the surface S chosen. 
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Figure 6-14:  Creation of a translational dislocation line in a continuous medium 

 

b) In a crystal lattice: Burgers vector 

 

The above statements still hold their validity - except that displacement must now be equal to a shift 

corresponding to a lattice period such that the coupling does not depend on the choice of the cutting 

surface. 

In this case, we use Burgers vector and circuit notion to characterize the displacement . We define 

the Burgers vector by the process suggested by Frank. But, first, we consider a dislocation in a 

simple cubic structure. 

 

Figure 6-15 shows a plane section of a cube with an edge dislocation. Again, we must distinguish the 

"good" crystal regions - where the deformations are small - and the regions of "defected" crystal, 

closer to the dislocation, where the deformations are significant. 

Figure 6-15: Edge dislocation with its corresponding Burgers circuit  

 

To define the Burgers vector , we draw a closed contour around the dislocation line in the clockwise 

direction with the orientation of the dislocation line . This circuit is located within the "good" crystal 

that encircles the dislocation. Then, we draw the same circuit on the perfect crystal (Figure 6-16). 

The vector necessary to close the circuit is the Burgers vector of the dislocation. Its direction is 
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from the final point to the initial point of the circuit. (This definition is not the only one in the scientific 

literature; many authors have given the opposite direction to the Burgers vector). 

Figure 6-16: Burgers circuit in a perfect crystal 

 

A dislocation is characterized by the following: 

- the direction of its line  

- its Burgers vector  

and the angle ( , ) defines the type of dislocation (Figure 6-17). 

Figure 6-17: Burgers circuit in the deformed crystal
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Remarks: 

 

- Except for the cases where the Burgers vector is parallel to the dislocation line , creating a 

dislocation line produces an extra half-plane, with one end coinciding with it (see Figure 6-17). The 

position of this additional half-plane can be obtained by considering the direct coordinate system (

, , ):  points in the direction of the plane. Conversely, if and  are known, can be 

obtained by completing the right-handed trihedron. 

-  Again, in the case where and are not parallel and for a conservative dislocation motion (i.e., 

without diffusion), the glide plane of the dislocation includes and . Its normal is then defined 

by . 

- There exists a specific terminology for the character of dislocations: 

- if ( ) = π/2, we call it an edge dislocation (Figure 6-17) 

- if ( ) = 0, we call it a screw dislocation (Figure 6-18), and it does not have a defined glide 

plane 

- mixed dislocation is the term used to indicate all other types of dislocations 

Figure 6-18: Representation of a screw dislocation 

 

We note that the Burgers vector is perpendicular to the dislocation line in the case of an edge 

dislocation. For a screw dislocation, the vector is parallel to the dislocation line (Figure 6-19).  

Figure 6-19: Burgers vector for an edge dislocation (a) and a screw dislocation (b)
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6.3 General properties of dislocations 
 

 

6.3.1 Dislocation loops 

 

As noted earlier in the chapter, dislocations cannot terminate within a crystal. Until now, dislocations 

are described as emerging from both sides of the crystal on the surface. However, it is possible to 

imagine closed loops of dislocations inside the crystal. We consider two kinds of loops: glide loops 

and prismatic loops. 

 

a) Glide loops 

 

i) A cut is made following the ABCD plane. The 

atoms of the upper part are then displaced on the 

left by an interatomic distance. Let us consider 

what happens at the edges of the loop. 

 

 

 

 

 

 

ii) We first observe what happens on AB and CD 

by making a section through EEEE. The 

displacement has introduced two edge dislocations 

of opposite signs. One of the segments has its extra 

half-plane pointing towards the upper part, the 

other towards the bottom. 

 

 

 

 

 

A section through FFFF shows screw dislocations. 

They must also be of opposite signs. 

 

 

 

 

 

 

 

 

 

 
Figure 6-20: Glide loop 

 

This dislocation line resides on dense atomic planes and could have any shape. Therefore, this loop 

configuration type is subdivided into portions of edge, screw, and mixed dislocations (Figure 6-21).
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Figure 6-21: Dislocation loop diagram 

 

b) Prismatic loops 

 

 

 

i) For the glide loops, we cut along a closed 

surface followed by a displacement in the plane 

where this surface lies. Here, we make the same 

cut, but instead of a parallel displacement, the 

two surfaces are separated by an interatomic 

distance, and the hole is filled with an extra 

plane. 

 

 

ii) We note that the section EEEE:  

 

(b) is identical to the FFFF section  

 

(c). They both show edge dislocation. Instead of 

introducing an extra plane (interstitial loop), we 

could have removed one (vacancy-type 

dislocation loop), and the result would have been 

the same. 

 

 

 
Figure 6-22: Interstitial prismatic loop 

 

6.3.2 Properties of the Burgers Vector 

 

Following the definition of the Burgers vector, we can list a few crucial properties. 

 

• The vector only depends on the nature of the "defected" crystal encircled by the circuit. It does 

not rely on the shape or the origin of the circuit. 

• For describing dislocations in terms of disconnections, the atomic displacement from one side of 

the disconnection is given by the Burgers vector . This vector expresses the crystal shear. 
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(6.10) 

• We refer to a perfect dislocation as those surrounded by "good" crystals containing no defects. In 

this case, the vector is a vector of the direct lattice. 

• The displacement , which defines the dislocation line, has the same value all along the line. That 

is, the Burgers vector is conservative. 

• If two dislocation lines, L1 and L2, end in the same line, L3, the Burgers vector of this dislocation is 

the sum of the other two vectors (Figure 6-23a). We then have: 

 

 
 

If we orientate the lines towards the node of the dislocations, we have   (Figure 6-23b). This 

is equivalent to Kirchoff's law in electricity. Thus, it is unsurprising to think of this analogy between 

and as discussed above. 

Figure 6-23: Conservation of Burgers vector 

 

• If the Frank circuit encircles several dislocations (6-24), the Burgers vector of this circuit is the sum 

of the Burgers vectors of the dislocations contained in it. 

 

• Figure 6-24: Frank circuit containing more than one dislocation 

• For screw dislocations, is parallel to ; the dislocation is dextrorotatory if and are in the same 

direction ( ). It is levorotatory in the other case. 

• In the case of a dislocation loop (glide loop), the vector is constant, whereas rotates by 2π. 

Therefore, the opposite sides of the loop have opposite (Figure 6-25).
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Figure 6-25: Glide loop: the Burgers vector is conserved 

 

 

6.4 Dislocation motion 
 

When dislocations move, a crystal is plastically deformed. Let us consider the case of a pair of edge 

dislocations of opposite signs (Figure 6-27). If stress is applied, these dislocations move in opposite 

directions. When dislocations move out of the crystal, an edge is created on both sides of the crystal. 

If the crystal contains several moving dislocations, we observe several "steps." 

 
Figure 6-27: Edges showing up at the surface during the displacement of a pair of edge dislocations 

 

 

We note that the result is what is expected for the displacement by an interatomic distance of one 

plane to the other. The motion of a screw dislocation is somewhat more complex to grasp. 

 

We understand well in Figure 6-20 that when a shear stress τ is applied, the two points A and B tend 

to separate and the two screw dislocations. When dislocations reach the surface, they produce two 

"steps" (Figure 6-28). The displacement of the screw dislocation is perpendicular to the displacement 

of the atoms, that is, perpendicular to the stress. 
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Figure 6-28: Step" edges appearing on the surface during the displacement of a pair of screw dislocations 

 

From the combined motions of screw and edge dislocations that we discussed, it is easy to understand 

what happens in the case of a glide loop (see Figure 6-29). 

 

When the loop has come out of the crystal, we have the same result as if: 

 

i) an edge dislocation had crossed the whole crystal; 

ii)  a screw dislocation had crossed the whole crystal; 

iii)  A pair of edge dislocations had gone out of the crystal; 

iv)  A pair of screw dislocations had exited the crystal. 

Figure 6-29: Step" edges appearing on the surface during the displacement of a dislocation loop 

 

 

6.4.1 Glide plane 

 

We note that a dislocation can only move without mass transfer (conservative motion) in the plane 

defined by the vectors and . This plane is called the glide plane of the dislocation.  

Screw dislocations do not have a well-defined glide plane ( and are parallel) but generally move 

in a densely packed lattice plane. (e.g. (111) planes in f.c.c.). During their displacement, they can 

change the glide plane (for example, they can vary from a (111) plane to a (1  1) if their Burgers 

vector is in the [ ]); this behavior is referred to as "cross-slip." This dislocation motion can make 

it possible to dodge some obstacles; in Figure 6-30, we can observe the double cross-slip of a  

dislocation loop with Burgers vector. 
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Figure 6-30:  The cross-slip of a dislocation loop 

 

 

6.4.2 Climb of a dislocation 

 

As we discussed, the motion of a dislocation in its glide plane is a phenomenon that occurs without 

mass transfer. This is not the case for an edge or mixed dislocation moving perpendicularly to this 

glide plane. 

For an edge dislocation to move (climb) by an interatomic distance perpendicular to its glide plane 

(vertical motion shown in Figure 6-31), a row of atoms must be removed or brought with the 

dislocation line. This mechanism can only happen by mass diffusion. In the case shown in Figure 6-

31, the upward dislocation motion can only be accomplished by diffusion of vacancies towards the 

dislocation. The creation of vacancies accompanies a downward dislocation motion. We note that 

dislocations can be sinks or sources of vacancy defects (or interstitials). Since the dislocation climb 

requires the formation and migration of point defects, it can only happen at reasonable speeds at high 

temperatures when thermally activated. 

 
 

Figure 6-31: Climb of dislocation to a vacancy line
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For prismatic loops that cannot move along their glide cylinder, a motion in the plane of the loops 

occurs that conserves the size of these loops. It is not a gliding process and not quite a climb 

mechanism since there is no mass diffusion toward the loops. The mechanism can only be produced 

by the diffusion of vacancies (or interstitials) along the dislocation line (pipe diffusion), referred to 

as conservative climb. 

 

 

6.4.3 relation between dislocation motion and plastic deformation 

 

We have observed that the movement of dislocations involves a plastic deformation; it must be 

possible to establish a relation between this motion and the deformation caused by it. Consider first 

the case in which a crystal in the shape of a parallelepiped (L1 L2 L3) (Figure 6-32) is crossed by a 

straight edge dislocation with Burgers vector , 

Figure 6-32: Deformation resulting from the gliding of a dislocation 

 

When the dislocation has crossed the whole crystal, it has caused a plastic deformation ε given by: 

 

 
 

If the dislocation only moves by a distance u, the deformation can be given by 

    

 

 

 

 

or if it is displaced over the surface , then: 

 

 

 
 

 

If we now suppose that Nm parallel dislocations have moved in this same glide plane or others parallel 

to it, the deformation after they have all crossed an equal area is given by: 

 

 
 

 

                                                where  

 

 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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We introduce then the notion of the density of mobile dislocations in their glide planes defined 

by: 

 
 

We notice that this quantity expresses: 

 

- either the average number of dislocations emerging per unit surface 

- or the total length of the dislocations per unit volume 

 

We then have: 

 
 

If we also assume that every dislocation moves with the same speed, we can express the deformation 

speed by: 

 

 
 

 

It is Orowan's equation. This is one of the most important equations and concepts of this course. 

 

Thus, we notice that the plastic deformation velocity is directly linked to the speed of the dislocations. 

Therefore, the dislocations appear as the "carriers" of plastic deformation, in the same way as 

electrons are for electric current. 

 

 

 

6.5 Multiplication of dislocations 
 

 

6.5.1 Hardening phenomenon 

 

The direct observations of dislocations, such as those with electron microscopes (Figure 6-33), clearly 

show that the increase in dislocation density accompanies plastic deformation. Dislocation densities 

vary from Λ = 106 cm-2 to Λ = 1011 or 1012 cm-2 after plastic deformation in metals. We know from 

experience that metals become harder during deformation. For instance, in Figure 6-34, we observe 

an increase in the yield strength (τ2 > τ1) during repeated loading/unloading cycles. This effect is 

caused by the "tangling" of dislocations, which mutually interfere with their motion and hence cause 

the "work hardening" and a substantial increase in internal stresses. 

 

Fracture occurs when the plastic deformation is made impossible by the dislocations completely 

blocking each other out (point R in Figure 6-34).

(6.15) 

(6.16) 

(6.17) 
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Figure 6-33:  Arrangement of dislocations produced by plastic deformation of iron at 20˚C (deformed to 9%) [top left]; 

at -135˚C (deformed to 7%) [top right]; Arrangement of dislocations in an iron-silicon alloy deformed at 20˚C [bottom 

left] and deformed to 20% and annealed 15 min at 600˚C [bottom right].

 
Figure 6-34: Increase in the yield strength during consecutive loadings of a sample
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6.5.2 Sources of Dislocations 

 

The increase in dislocation density during plastic deformation provides evidence that there must be 

sources of dislocations. Several mechanisms have been suggested; the simplest one is the one 

conceived by Frank and Read (Figure 6-35). 

Figure 6-35: Formation of a dislocation loop by the Frank-Read mechanism 

 

Consider a dislocation line ABCD, with only the segment BC situated in a glide plane: B and C are 

thus anchor points. When a shear stress τ is applied, the segment BC bows into an arch shape. For τ 

> τcrit, the loop extends until the two segments, P' and P, touch. Since these two loop segments have 

Burgers vectors of opposite signs but equal length, they cancel out. What remains is a glide loop, 

which continues to grow, and a new arch forms, continuing the process to radiate dislocation loops. 

It is a Frank-Read source. 

 

6.5.3 Other hardening processes 

 

The motion of dislocations is perturbed by the presence of other dislocations (work hardening); we 

can also block the dislocations by introducing other atoms in the lattice (interstitial and substitutional 

impurities, precipitates). 

 

a) Pinning of dislocations 

 

Very often, interstitial impurities (C, N, O) diffuse towards the dislocations and make their motion 

very hard; this phenomenon corresponds to an increase in the yield strength of the material. 

 

For example, the tensile stress-strain curve of iron and mild steel (Figure 6-36) shows a very 

distinctive aspect of these materials, that is, a higher yield point followed by a drop in the stress - 

called lower yield point - where the material deforms at a constant stress value. To understand this 

phenomenon, we assume that impurities block dislocations. Then, under applied stress, dislocations 

are progressively "unblocked" from their cloud of impurities and move. As a result, the activation 

and propagation of series dislocations in a common glide plane can develop macroscopic slip bands 

called Lüders bands. This phenomenon always appears after aging, during which other atoms can 

migrate towards the dislocations, and is not observed just after a slight deformation - in other words, 

after the creation of new dislocations.
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Figure 6-36: Characteristic stress-strain curve for mild steel 

 

b) Structural hardening 

 

The elements of an alloy, in solid solution or as dispersed phases, modify the plastic properties of the 

base metal. Figure 6-37 shows the effect of some thermal processes on an Al-2% alloy. After 

quenching, we have an oversaturated solid solution of Cu in aluminum. The following thermal 

processes cause the precipitation of copper as small particles with different characteristics (size, 

coherence with the matrix). 

 

These age-hardening processes are accompanied by a substantial variation in the mechanical 

properties of the alloy as well. All these processes can be described as the interaction between 

dislocations and obstacles impeding their motion. Here, these obstacles are precipitates. 

 

 

 

Figure 6-37: Effect of different thermal treatments on the deformation of an alloy Al-2%-Cu. 

Measurements were taken at -196˚C. 

 

 

1. Aged for 2 days at 350˚C, the 

metal contains incoherent 

particles: small CuAl3 rods 

2.5μm distant. 

2. Aged for 27.5 hours at 190˚C, the 

metal contains incoherent 

particles at 400 Angstrom 

distance. 

3. Aged 2 days at 130˚C, the metal 

contains Guinier-Preston zones 

(very thin zones of 100 of 

diameter and atomic planes 

situated 150  distant. 

4. Simply quenched, the metal is a 

solid solution. 
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6.6 Recrystallization 
 

In this chapter, we showed how the deformation of material causes a significant increase in the 

concentration of dislocations (Λ goes from 106 to 1011 cm-2). This phenomenon corresponds to a 

substantial increase in internal energy. For the crystal to return to its initial state, it has to make 

dislocations generated by plastic deformation disappear. Recrystallization is often the primary 

mechanism associated with the full recovery of dislocations. This recovery is the thermodynamic 

driving force of recrystallization. 

 

Figure 6-38 a)-h) shows the recrystallization and fast grain growth from stored energy of dislocations 

in a heavily deformed gold polycrystalline sample. Recovery and annihilation of dislocations drive 

recrystallation, which causes a reduction of residual stresses, dislocation density, and internal energy 

(Figure 6-38: i) ). The grain growth needs the diffusion of atoms through the interface. It can only be 

achieved at high temperatures, so the full recovery of metals can only be performed at high 

temperatures. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 6-38: The recrystallized grain (arrow) does not contain dislocations anymore  

 

6.7 Crystal growth 
 

The presence of dislocations is a necessary condition for crystal growth. We consider the crystal 

growth starting from a lightly oversaturated vapor phase. The growth is caused by the deposition of 

atoms on the surface. In principle, this surface is not regular but shows incomplete layers of atoms 

bounded by steps. These steps are not necessarily straight but can exhibit edges called jogs (Figure 

6-39). 

 

Consider the effect of vapor pressure. Some atoms in the vapor are absorbed on the surface. Only 

surface diffusion is fast enough for the absorbed atoms to diffuse over a long distance until they reach 

a step. Then, atoms diffuse along the step until they reach a jog. Since they are in contact with the 

crystal on 3 of the six faces, atoms are bound more strongly. We can then say there is equilibrium 

when atoms join and leave the jog with the same frequency. 

i) 
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On the other hand, if there is a light oversaturation, more atoms join the jog than leave; the step 

"climbs" up until it reaches the edge of the crystal. Then, we can observe the layers fill progressively, 

and the steps disappear. New layers must nucleate to continue the growth. The presence of a nucleus 

(an isolated monolayer) increases the surface energy, and this nucleus is not stable unless it reaches 

a specific critical size. The probability that a nucleus with the required size is formed depends heavily 

on the oversaturation. An oversaturation of 25% to 40% is necessary for the growth to have a 

noticeable speed.  

 

As opposed to the previous predictions, the speed of crystal growth increases almost proportionally 

to oversaturation for small values ranging from 3% to 4% (Figure 6-40). The curve found 

experimentally is produced if nuclei formation is unnecessary and steps already exist on the surface. 

To explain this phenomenon, Frank supposed that the growing crystal was not perfect but contained 

screw dislocations. 

 
Figure 6-39: Growth by sublimation 

 
Figure 6-40: Growth speed of a monocrystal as a function of the oversaturation of the atmosphere 

 

Figure 6-41 illustrates Frank's explanation: a screw dislocation reaches the surface of the crystal, 

normal to it, creating a step from the end of the dislocation to the edge of the crystal. When the surface 
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absorbs atoms, they diffuse towards this step, which then moves sideways. However, this motion 

cannot complete a uniform atomic layer because the upper surface is a spiral ramp. 

Figure 6-41:  Growth on the front of a screw dislocation 

 

We can easily understand (Figure 6-42) that during the growth, the step moves as a rigid spiral that 

rotates around its center O with a certain angular velocity ω 

 

  and   

 

 = critical radius of the nucleus previously mentioned 

 = sideway displacement speed of a step with infinite radius (straight step) 

 = instantaneous radius of the spiral 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-42: Diagram of the spiral growth on a screw dislocation 

 

Figure 6-43 shows the result obtained on the face c of a "salol" crystal made from a solid solution of 

carbon bisulphide. Figures 6-43 b) and c) represent the growth spirals obtained on the base plane of 

silicon carbide.  
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Figure 6-43: Images illustrating the growth stimulated by the presence of a screw dislocation. a) The surface of a) 

polyethylene crystal. b) and c) SiC crystal. 


